The Onext neutrinoless double beta decay experiment # J.J. Gómez Cadenas IFIC (CSIC & UVEG) The art of experiment LBNL, May 2014 ### Searching for nothing? Rather... # Theoretical introduction # Neutrinoless double beta decay and the neutrino mass ### Massive neutrinos and cosmology ### Majorana landscape revisited Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations #### Phys. Rev. Lett. 112, 051303 (2014) Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations JCAP 1303 (2013) 043 - Discovery window: 15 mev-170 meV - •Bot hierarchies give almost the same "phase space". ### Majorana landscape in 2014 - Claim for ββ0v strongly disfavored by null results in ¹³⁶Xe and ⁷⁶Ge - • $m_{\beta\beta}$ ~ 200 meV. 150 Barely out of "cosmo-window" $\sum m_i = 0.32 \pm 0.11$ **Inverted** NH 500 **Experimental challenges** # Why BBOv experiments are difficult - •Earth is a very radioactive planet. There are about 3 grams o U-238 and 9 grams of Th-232 per ton of rock around us. - •This is an intrinsic activity of the order of 60 Bq/kg of U-238 and 90 Bq/kg of Th-232. - •The lifetime of U-238 is of the order of 10⁹ y and that of Th-232 10¹⁰ y. We want to explore lifetimes of of the order of 10²⁶ -10²⁷ y. 10¹⁶: number of sand grains (1mm diameter) in a beach 1 km long, 1km wide, 10 m deep # Building the perfect \$\beta\beta\beta\beta\vertext{experiment} $$T_{1/2}^{-1} \propto a \cdot \epsilon \cdot \sqrt{\frac{Mt}{\Delta E \cdot B}}$$ Isotope Find an isotope with large Q, no long lived radioactive isotopes, easy to procure and cheap. ΔΕ Build a detector with the best possible resolution #### Scalability Build a detector with no dead areas, and economy of scale #### Background Detector provides extra handles to reduce background # Measuring ββ0v in an ideal experiment # Measuring nothing is very difficult - Get yourself a detector with perfect energy resolution - Measure the energy of the emitted electrons and select those with (T1+T2)/Q = 1 - •Count the number of events and calculate the corresponding half-life. - In Xe-136, a perfect detector of 1ton observes 3 events for a lifetime of 10²⁷ y (~20 meV). - •Improvement with √T but if you must subtract background then ∜T $$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 m_{\beta\beta}^2$$ ### Why NEXT? — Advantages of HPXe technology $$T_{1/2}^{-1} \propto a \cdot \epsilon \cdot \sqrt{\frac{Mt}{\Delta E \cdot B}}$$ Cost Xenon is the cheapest and easiest to enrich of all $\beta\beta$ isotopes. No long lived radioactive isotopes. There is already 1 ton of enriched xenon in the World. #### ΔΕ HPXe TPC is the only xenon detector that provides good energy resolution (better 1% FWHM at Qbb) Xenon is a noble gas suitable to build a TPC. No dead areas, S/N improves with L #### Background HPXe TPC is the only xenon detector that provides topological signal # Scalability **Economy of scale**: Double L, signal increases 8 (L³), background increases 4 (L²), S/N improves by a factor 2 # Energy resolution makes a difference #### Signal and background: - •Signal: mv ~200 meV and an exposure of 5 ton year. - Background 1 count/keV/ton/year. # Topological background reduction - •In xenon gas at 15 bar, a ββ event is a twisted track, 10 cm long, with two energy blobs at the two ends and no additional floating clusters. - •Instead the backgrounds are single electrons, accompanied 85% of the time by X-rays (Xenon de-excitation). - •HPXe TPC offers a signal that looks like a signal: two identified electrons with an energy within 10 keV of Qbb ### **HPXe** and **NEXT**: a bit of history J. Phys. G: Nucl. Part. Phys. 17 (1991) S231-S241. Printed in the UK #### The Milano Experiment on Double Beta Decay of 136Xe E. Bellotti^(*), O. Cremonesi, E. Fiorini, G. Gervasio, S. Ragazzi, L. Rossi^(**), J. Szarka^(***), P. P. Sverzellati, T. Tabarelli, <u>L. Zanotti</u> Dipartimento di Fisica dell' Università di Milano & I.N.F.N. sezione di Milano (*) also I.N.F.N. Laboratori Nazionali del Gran Sasso (L.N.G.S.) (**) I.N.F.N. sezione di Genova (***) also Comenius University - Bratislava ABSTRACT: An experiment on double β decay of 136 Xe has been performed at the Gran Sasso Underground Laboratory (L.N.G.S.). The detector was a multicell proportional counter, built from selected low background materials, which was filled alternatively with natural Xenon, enriched Xenon to 64% in the 136 Xe isotope, and natural Xenon cleaned by ultracentrifugation, and heavily shielded against environmental radioactivity. After 6000 hours of operation half lifetime for the neutrinoless decay mode turns out to be greater than 2 x 10^{22} y at 90% C.L. A limit of 6 x 10^{19} y, also at 90% C.L., is reported for the 2v decay mode. Fig. 1. Detector layout and single cell scheme. The detector is a multicell proportional counter consisting of 61 contiguous cells (fig. 1). Each cell is hexagonal and has a central anode wire of gold plated tungsten ($\sim 20~\mu m$ diameter) surrounded by 24 cathode wires (copper-beryllium, 100 μm diameter); all cells are arranged in a honeycomb structure. Overall detector volume is 140 1, with a cell dimension of 2.5 cm ø x 80 cm length and active volume is 79 1. The wire cage is enclosed in a Ti vessel with steel flanges. The detector has been operated at the pressure of 9.5 bar with three different gas fillings: single wire ~ 7.5% @ 122 keV all wires ~ 8.0% @ 661 keV ~ 5.0% @ 1592 keV the latter point being obtained using the double escape peak of the 2615 keV γ line of ²⁰⁸Tl. About 4 % FWHM at Qbb ### First 0ν Half-life Limit from the Gotthard Xenon Time Projection Chamber - H.T. Wong ^a F. Boehm ^a, P. Fisher ^a, K. Gabathuler ^b, H.E. Henrikson ^a, D.A. Imel ^a, M.Z. Iqbal ^a, V. Jörgens ^a, L.W. Mitchell ^a, B.M. O'Callaghan-Hay ^a, - J. Thomas α , M. Treichel γ , J.-C. Vuilleumier γ , J.-L. Vuilleumier γ . - α Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California 91125, U.S.A. - ⁶ Paul Scherrer Institute (formerly SIN), 5234 Villigen, Switzerland. - 7 Institut de Physique, A.-L. Breguet 1, 2000 Neuchâtel, Switzerland. ABSTRACT: A xenon Time Projection Chamber with an active volume of 207 liters has been built to study 0ν and 2ν double beta decay in 136 Xe. The TPC has been installed in the Gotthard Tunnel Underground Laboratory, and is currently taking data with 5 atm of xenon enriched in 62.5% 136 Xe. The first 166 hours of data are presented. Based on this data set, we deduce a half-life limit of $T_{\frac{1}{2}}^{0\nu}(0^+ \rightarrow 0^+) > 6.2 \times 10^{21}$ years for the 0ν mode, at a 90% C.L. ### Gothard TPC Fig. 2. A typical 'two electron' candidate: the xz and yz projection, as well as the extracted x-y projections (in the lower frame) are drawn. Scales are in cm. The time evolution of the anode signal is displayed on the right. The $\beta\beta$ -candidate exhibits 'blobs' at *both* ends of a continuous track. Fig. 4. Energy spectrum of a 232 Th source. The peak is due to the double-escape of the 2614-keV γ -rays in 208 Tl. The full spectrum is shown, as well as the spectrum obtained after filtering the events with our track-reconstruction program (selecting 'two-electron' events). - Classical "gain" TPC: wires + pads: quencher CH4 (4%). - Observed topological signature (spaghetti with two meat balls) - Quencher killed the scintillation light: no t0, poor energy resolution. - "Final" results of Gothard in 1998. # EXO white paper (1999) - Symmetric TPC at 5 bar. Total volume of 40 m3 for 1 ton mass. - "double vessel" with buffer gas - Included the notion of "Ba Tagging" - •Included the notion that scintillation light had to be observed for t0. - 1Kv/cm... huge electric field in the cathode. - •GEM readout. Estimated energy resolution was ~3% FWHM Qbb # NEXT EOI (2008) "The readout will probably be done with micro pattern device (Micromegas, LEM and GEM are suitable alternatives) although the use of wires is not excluded" - •Ten years later: The NEXT EOI was essentially a modest version of EXO - Still thinking in "gain" TPCs with micro pattern readout. ### The breakthrough #### 2009: D. Nygren High-pressure xenon gas electroluminescent TPC for 0-n bb-decay **Fig. 3.** Separated-function concept, illustrating the possibility to detect EL light at plane B originating from plane A, or vice-a-versa. The event, shown as a wiggly track, generates primary scintillation recorded at both planes. Subsequently, EL light generated at plane A is detected almost uniformly everywhere on plane B for a precise energy measurement. "A high-pressure xenon gas TPC can provide both event topology information and optimized energy resolution for the detection of bb decay in ¹³⁶Xe. The result of optimization indicates that, at the ¹³⁶Xe Q-value of 2480 keV, an energy resolution of dE/E < 5x 10-3 FWHM may be realizable, even at the 1000 kg scale. Signal detection by electroluminescence appears essential to realize this performance. # NEXT: A light TPC EL mode is essential to get lineal gain, therefore avoiding avalanche fluctuations and fully exploiting the excellent Fano factor in gas - It is a High Pressure Xenon (HPXe) TPC operating in EL mode. - •It is filled with 100 kg of Xenon enriched at 90% in Xe-136 (in stock) at a pressure of 15 bar. - •The event energy is integrated by a plane of radiopure PMTs located behind a transparent cathode (energy plane), which also provide t0. - •The event topology is reconstructed by a plane of radiopure silicon pixels (MPPCs) (tracking plane). #### 2010/2011: DEMO (IFIC) and DBDM EL prototypes (LBNL) built and commissioned DEMO @ IFIC made possible thanks to the crucial contribution of J. White and Dave Nygren. Spanish groups benefited enormously from USA groups know-how. ### DBDM: Best resolution to date Hot Getter Gas System ### HHV modules PMTs FEE SiPMs FEE ### NEXT R&D: detector performance achievements 100 200 Total Calibrated S2 Charge (keV) # The beauty of resolution # Topology of the signal in onext - Higher energy deposition clearly visible at electron track end-point. - Tracks reconstructed using SiPMs + PMTs ### NEXT 100 kg detector at LSC: main features ### NEXT at LSC Infrastructures: platform, lead castle, gas system, emergency recovery system, completed. First phase of experiment starts in 2015. In stock, 100 kg of enriched xenon and 100 kg of depleted xenon. # NEXT100 rejection of backgrounds #### A transparent target, away from surfaces Veto of effectively all charged backgrounds entering the detector (left). High-energy gammas have a long interaction length (>3 m) in HPXe. # NEXT100 rejection of backgrounds #### The 2-electron signature Interaction of high-energy gammas (from TI-208 and Bi-214) in the HPXe can generate electron tracks with energies around the Q value of Xe-136. However, electron often accompanied of satellite clusters and single blob deposit # NEXT100 rejection of backgrounds | | Ονββ | TI-208 | Bi-214 | |---------------------|--------|--------|--------| | Fiducial
E>2 MeV | 67.86% | 0.25% | 0.01% | | ROI | 95.52% | 8.99% | 64.66% | | 1 track | 74.60% | 1.86% | 12.54% | | 2 blobs | 73.76% | 9.60% | 9.89% | #### The 2-electron analysis - •Effect of the filters (cuts) defining an event with 2 electrons and energy in a ROI of 2σ around $Q_{\beta\beta}$. - •Efficiency for signal ~35% for suppression factors 4-8 x 10⁻⁷ - Topology rejection is the product of 1 track x 2 blobs conditions ### NEXT 100 expected background | | Activity (Bq) | | Rejection Factors | | Final rate (ckky) | | |----------------|---------------|-----------|-------------------|-----------|-------------------|-----------| | | TI-208 | Bi-214 | TI-208 | Bi-214 | TI-208 | Bi-214 | | Dice Boards | 4,28E-03 | 3,21E-03 | 7,90E-07 | 8,85E-07 | 3,047E-05 | 2,560E-05 | | PMTs | 8,40E-03 | 3,00E-02 | 3,30E-07 | 2,68E-07 | 2,498E-05 | 7,244E-05 | | Field Cage | 4,38E-03 | 1,53E-02 | 5,30E-07 | 8,02E-07 | 2,091E-05 | 1,107E-04 | | ICS | 1,326E-02 | 1,105E-01 | 1,100E-07 | 8,400E-08 | 1,315E-05 | 8,365E-05 | | Vessel | 1,66E-01 | 5,16E-01 | 1,10E-08 | 2,80E-09 | 1,644E-05 | 1,301E-05 | | Shielding Lead | 6,266E-01 | 1,084E+00 | 2,000E-09 | 1,000E-10 | 1,129E-05 | 9,763E-07 | | SUBTOTAL | 8,23E-01 | 1,76E+00 | | | 1,172E-04 | 3,063E-04 | | TOTAL BKGND | 2,58E+00 | | | | 4,24E-04 | | ### Physics reach - Reach mv < 100 meV. - •Thus, NEXT has a chance of making a discovery or seeing a hint. ### Majorana Gas Instrumented with Xenon #### What is MAGIX - ●It is a symmetric TPC filled with O(1 ton) of Xenon enriched at 90% in Xe-136 at a pressure of 15 bar - •The drift length is 2 x 2 m (2 ms drift, DEMO measures lifetimes of > 10 ms) - •The TPC radius is about 1 m. - ●The active volume is about 12 m³ (1 ton at 15 bar) - •The event energy is integrated by wavelength shifting light guides surrounding the gas and read by PMTs located outside the fiducial volume. - •The event topology is reconstructed by two planes of radiopure silicon pixels (MPPCs by default). #### What is MAGIX - PMTs outside the fiducial area, shielded by copper. This eliminates one of the three dominating sources of background. - •Detector inside a water tank with better stopping power than lead may allow to reduce the thickness of ICS. - •Gas additives? TMA could reduced lateral diffusion (better tracking) and improve resolution (penning effect). - Economy of scale automatically yields a factor ~2.5 background reduction. #### The MAGIC of MAGIX - •A HPXe TPC with a mass in the range of the ton can explore the inverted hierarchy, reaching ~20 meV and operating as a virtually background-free detector. - The topological signature can be enhanced by reducing lateral diffusion (TMA) among other possibilities. - Ba tagging may also be available in gas. - Overall MAGIX may be the ultimate detector to discover the Majorana nature of the neutrino. #### Dave's 5 cents to NEXT and MAGIX ### NEXT Asymmetric TPC "Separated function" - •Invented the TPC. - Proposed the use of EL as the only valid way to achieve energy resolution. - Invented the SOFT concept. - Proposed the concept of "dual TPC" (same apparatus, different configurations for DM and bb0nu) - Proposed the use of TMA to improve the response of both bb0nu and DM mode - Fundamental contributions to design and R&D - And most importantly he has taught us the secret of.... ## Physics as a fountain of eternal youth http://www.jotdown.es/2012/09/david-nygren-y-alessandro-bettini-the-physics-as-fountain-of-eternal-youth/